Modèle asymptotique pour l'amortissement Landau en physique des plasmas.

Belaouar Radoin

IRMA-ULP, Strasbourg, INRIA-Lorraine (Projet CALVI).

Collaborations : T. Colin, C. Galusinski (MAB Bdx1), G. Gallice (CEA-CESTA), V. Tikhonchuk (CELIA Bdx1).

Motivation et contexte physique.

Motivation: Simulation en laboratoire de la fusion par confinement inertiel (LMJ, NIF).

Méthode: Focaliser plusieurs faisceaux laser sur une cible de D-T pour activer la fusion.

Chauffage de la cible par la source d'énergie Création d'un plasma qui comprime le DT Ignition à partir d'un point chaud

Combustion

=> Création d'un plasma par ionisation de la cible: interaction non-linéaire avec le laser.

But: Comprendre et décrire les phénomènes non-linéaires qui vont nuire au rendement de la réaction.

INTERACTION LASER-PLASMA.

Trois types d'ondes se propagent dans le plasma :

- Ondes électromagnétiques transverses : $\omega_T^2(k) = \omega_{pe}^2 + k^2 c^2$.
- Ondes plasma électroniques longitudinales : $\omega_P^2(k) = \omega_{pe}^2 + 3k^2 v_{the}^2$ avec $v_{the} \sim \frac{c}{10}$.

• Ondes sonores longitudinales : $\omega_S(k) = c_s |k|$ avec $c_s \sim \frac{v_{the}}{\epsilon_0}$.

Les instabilités en présence.

Amortissement Landau : description cinétique.

Effet Landau : déséquilibre cinétique découvert dans les années 50 à partir du système Vlasov-Poisson.

Relation de dispersion des ondes plasmas : analyse onde plane

$$\omega(k) = \omega_{pe}(1 + \frac{3}{2}\lambda_{De}^2|k|^2) + i\gamma(k)$$

- \rightarrow Amortissement des ondes plasma si $\gamma(k) < 0$
- \rightarrow Transfert d'énergie vers les électrons.
- \rightarrow Accélération des électrons (en général...!).

 \rightarrow Préchauffage de la cible néfaste pour le rendement de la réaction.

• Modèles cinétiques: système de Vlasov-Maxwell. Nécessaire d'avoir une échelle de temps, et de l'espace des phases fine.

• Modèles cinétiques: système de Vlasov-Maxwell. Nécessaire d'avoir une échelle de temps, et de l'espace des phases fine. Contrainte : Temps caractéristique= $\frac{1}{\omega_{pe}}$ (avec $\omega_{pe} \sim 10^{15} s^{-1}$) et on a besoin de décrire les phénomènes sur des temps $10^4 \frac{1}{\omega_{pe}}$ au moins

=> impossible de décrire des comportements en temps long (ou des instabilités faible).

 Modèles cinétiques: système de Vlasov-Maxwell. Nécessaire d'avoir une échelle de temps, et de l'espace des phases fine.

Contrainte : Temps caractéristique= $\frac{1}{\omega_{pe}}$ (avec $\omega_{pe} \sim 10^{15} s^{-1}$) et on a besoin de décrire les phénomènes sur des temps $10^4 \frac{1}{\omega_{pe}}$ au

moins

=> impossible de décrire des comportements en temps long (ou des instabilités faible).

• Modèles asymptotiques : (approximation d'enveloppe, approximation paraxiale).

Zakharov a introduit dans les années 70 un modèle d'équations décrivant l'interaction de l'enveloppe en temps du champ electrique avec la partie basse fréquence de la variation de densité des ions.

Plan

Plan

Elle correspond à une interaction résonnante à trois ondes. Typiquement, l'onde plasma (k_p, ω_p) créée par effet Raman donne naissance à une autre onde plasma (k_2, ω_2) et une onde acoustique ionique (k_3, ω_3) avec

$$\omega_p(k_p) = \omega_2(k_2) + \omega_3(k_3),$$

$$k_p = k_2 + k_3.$$

Le point de départ est le système de Zakharov

$$2i\omega_{pe}\partial_t \mathbf{E} + 3v_e^2 \partial_x^2 \mathbf{E} = \omega_{pe}^2 n \mathbf{E} + \omega_{pe}^2 E_p(x) \exp(i(k_p x - \omega_p t))),$$
$$\partial_t^2 n - c_s^2 \partial_x^2 n = \frac{1}{16\pi n_0 m_i} \partial_x^2 (|\mathbf{E}|^2).$$

avec *E* l'enveloppe lentement variable des ondes plasma et *n* la fluctuation basse fréquence de densité des ions.

• Explosion en temps fini: En 2-D: Glangetas-Merle.

• Explosion en temps fini: En 2-D: Glangetas-Merle.

• Numérique: Glassey, Bao, Payne. Principalement méthodes spectrales.

• Explosion en temps fini: En 2-D: Glangetas-Merle.

• Numérique: Glassey, Bao, Payne. Principalement méthodes spectrales.

• Dérivation: Texier à partir d'Euler-Maxwell en régime "non-linéaire" (2006).

On adimensionne le système sur une échelle spatio-temporelle caractéristique de l'onde pompe notée respectivement L et T. On choisit L et T t.q. $k_p L \gg 1$ et $\omega_p T \gg 1$ et on pose $k_p L = \frac{k_1}{\varepsilon}$ et $\omega_p L = \frac{\omega_1}{\varepsilon}$ avec $k_1 = O(1)$ et $\omega_1 = k_1^2$.

On adimensionne le système sur une échelle spatio-temporelle caractéristique de l'onde pompe notée respectivement L et T. On choisit L et T t.q. $k_p L \gg 1$ et $\omega_p T \gg 1$ et on pose $k_p L = \frac{k_1}{\varepsilon}$ et $\omega_p L = \frac{\omega_1}{\varepsilon}$ avec $k_1 = O(1)$ et $\omega_1 = k_1^2$. Le système s'écrit

$$2i\omega_{pe}\partial_t \boldsymbol{E} + 3v_e^2 \partial_x^2 \boldsymbol{E} = \omega_{pe}^2 n\boldsymbol{E} + \omega_{pe}^2 E_p(x)e^{i(k_p x - \omega_p t)},$$
$$\partial_t^2 n - c_s^2 \partial_x^2 n = \frac{1}{16\pi n_0 m_i} \partial_x^2 (|\boldsymbol{E}|^2).$$

On adimensionne le système sur une échelle spatio-temporelle caractéristique de l'onde pompe notée respectivement L et T. On choisit L et T t.q. $k_p L \gg 1$ et $\omega_p T \gg 1$ et on pose $k_p L = \frac{k_1}{\varepsilon}$ et $\omega_p L = \frac{\omega_1}{\varepsilon}$ avec $k_1 = O(1)$ et $\omega_1 = k_1^2$. La forme adimensionnée s'écrit alors

$$i\partial_t E + \varepsilon \partial_x^2 E = nE + E_p(x)e^{i\frac{k_1x - \omega_1 t}{\varepsilon}},$$
$$\partial_t^2 n - \partial_x^2 n = \varepsilon \partial_x^2 (|E|^2).$$

On adimensionne le système sur une échelle spatio-temporelle caractéristique de l'onde pompe notée respectivement L et T. On choisit L et T t.q. $k_p L \gg 1$ et $\omega_p T \gg 1$ et on pose $k_p L = \frac{k_1}{\varepsilon}$ et $\omega_p L = \frac{\omega_1}{\varepsilon}$ avec $k_1 = O(1)$ et $\omega_1 = k_1^2$. La forme adimensionnée s'écrit alors

$$i\partial_t E + \varepsilon \partial_x^2 E = nE + E_p(x)e^{i\frac{k_1x - \omega_1t}{\varepsilon}},$$
$$\partial_t^2 n - \partial_x^2 n = \varepsilon \partial_x^2 (|E|^2).$$

L'idée : montrer que pour des données initiales bien préparées, il existe un intervalle de temps $[0, T^*]$ t.q.

$$\begin{split} E(t,x) &= E_1(t,x)e^{i(\frac{k_1x - \omega_1t}{\varepsilon})} + \frac{E_2(t,x)e^{i(\frac{k_2x - \omega_2t}{\varepsilon})} + O(\varepsilon)}{\varepsilon} + O(\varepsilon),\\ n(t,x) &= n_1(t,x)e^{i(\frac{(k_1 - k_2)x - (\omega_1 - \omega_2)t}{\varepsilon})} + c.c. + O(\varepsilon). \end{split}$$

Régime ϵ **petit.**

Si on cherche (E, n) sous la forme

$$E(t,x) = E_1(t,x)e^{i\left(\frac{k_1x - \omega_1t}{\varepsilon}\right)} + E_2(t,x)e^{i\left(\frac{k_2x - \omega_2t}{\varepsilon}\right)},$$
$$n(t,x) = n_1(t,x)e^{i\left(\frac{(k_1 - k_2)x - (\omega_1 - \omega_2)t}{\varepsilon}\right)} + c.c.$$

Régime ϵ **petit.**

Alors $(E_j)_{j=1,2}$ et n_1 vérifient

$$i(\partial_t E_1 + 2k_1 \partial_x E_1) + \varepsilon \partial_x^2 E_1 = E_p + n_1 \left(\frac{E_2 + E_1 e^{-i\frac{k_3 x - \omega_3 t}{\varepsilon}}}{\varepsilon} \right),$$
$$i(\partial_t E_2 + 2k_2 \partial_x E_2) + \varepsilon \partial_x^2 E_2 = n_1^* \left(\frac{E_1 + E_2 e^{-i\frac{k_3 x - \omega_3 t}{\varepsilon}}}{\varepsilon} \right),$$

 $-2ik_3(\partial_t n_1 + \partial_x n_1) + \varepsilon \Box n_1 = -k_3^2 E_1 E_2^* + 2i\varepsilon k_3 \partial_x (E_1 E_2^*) + \varepsilon^2 \partial_x^2 (E_1 E_2^*).$

Régime ϵ **petit.**

Alors $(E_j)_{j=1,2}$ et n_1 vérifient

$$i(\partial_t E_1 + 2k_1 \partial_x E_1) + \varepsilon \partial_x^2 E_1 = E_p + n_1 \left(\frac{k_3 x - \omega_3 t}{\varepsilon} \right),$$
$$i(\partial_t E_2 + 2k_2 \partial_x E_2) + \varepsilon \partial_x^2 E_2 = n_1^* \left(E_1 + E_2 e^{-i\frac{k_3 x - \omega_3 t}{\varepsilon}} \right),$$

 $-2ik_3(\partial_t n_1 + \partial_x n_1) + \varepsilon \Box n_1 = -k_3^2 E_1 E_2^* + 2i\varepsilon k_3 \partial_x (E_1 E_2^*) + \varepsilon^2 \partial_x^2 (E_1 E_2^*).$

Formellement quand ε tend vers 0,

$$\partial_t E_1 + 2k_1 \partial_x E_1 = -in_1 E_2 - iE_p,$$

$$\partial_t E_2 + 2k_2 \partial_x E_2 = -in_1^* E_1,$$

$$\partial_t n_1 + \partial_x n_1 = -\frac{ik_3}{2} E_1 E_2^*.$$

MOAD, 22/03/07 - p.11/2.

Résultat de convergence.

Si on note

$$\mathcal{E}_{app}(t,x) = \sum_{j=1}^{2} E_j(t,x) e^{i \frac{k_j x - \omega_j t}{\varepsilon}}$$
$$\mathcal{N}_{app} = n_1(t,x) e^{i \frac{(k_1 - k_2)x - (\omega_1 - \omega_2)t}{\varepsilon}} + c.c.$$

avec E_1 , E_2 et n_1 vérifiant le système limite, alors pour des données initiales bien préparées on a

Théorème 1 Il existe un temps T^* indépendant de ε tel que

$$|(E - \mathcal{E}_{app}, N - \mathcal{N}_{app})|_{L^{\infty}([0,T^*];H^{s-2})} = O(\varepsilon), \qquad s > \frac{7}{2}.$$

• Développement WKB à deux phases de type optique géométrique

: Joly-Métivier-Rauch.

MOAD, 22/03/07 - p.12/22

Illustration numérique.

•
$$E_p(x) = 10^{-2} e^{-\delta L(x-0.5L)^2}$$
 avec $L = 300\pi$

• Les données initiales sont $E_1(t=0) = 0.2e^{-\delta L(x-0.5L)^2}$, $E_2(t=0) = 10^{-3}e^{-\delta L(x-0.5L)^2}$ et $n_1(t=0) = 0$

• On choisit $k_1 = 5$ et on résout

$$k_1 = k_2 + k_3,$$

 $\omega_1(k_1) = \omega_2(k_2) + \omega_3(k_3)$

et on construit $E(0,x) = E_1(0)e^{i\frac{k_1x}{\epsilon}} + E_2(0)e^{i\frac{k_2x}{\epsilon}}$.

Illustration numérique

Figure 1: gauche : $|E_{app}|_{l^{\infty}}(t)$ en trait plein, $|E|_{l^{\infty}}(t)$ en pointillés, droite : l'erreur relative.

Hypothèses:

• Plasma homogène non-magnétisé de densité n_0 constitué d'électrons (-e) et d'ions (+e).

- Distribution des ions Maxwellienne.
- Dimension 1 dans l'espace des phases (x, v).

Hypothèses:

• Plasma homogène non-magnétisé de densité n_0 constitué d'électrons (-e) et d'ions (+e).

- Distribution des ions Maxwellienne.
- Dimension 1 dans l'espace des phases (x, v).

Avec ces hypothèses, le système de Vlasov-Maxwell s'écrit

$$\partial_t f_e(x, v, t) + v \partial_x f_e(x, v, t) - \frac{e}{m_e} E \partial_v f_e(x, v, t) = 0,$$

$$\partial_t E = -4\pi j.$$

avec $f_e(x, v, t)$ la fonction de distribution des électrons dans le plasma et *j* la densité de courant.

Hypothèses:

• Plasma homogène non-magnétisé de densité n_0 constitué d'électrons (-e) et d'ions (+e).

- Distribution des ions Maxwellienne.
- Dimension 1 dans l'espace des phases (x, v).

Avec ces hypothèses, le système de Vlasov-Maxwell s'écrit

$$\partial_t f_e(x, v, t) + v \partial_x f_e(x, v, t) - \frac{e}{m_e} E \partial_v f_e(x, v, t) = 0,$$

$$\partial_t E = -4\pi j.$$

avec $f_e(x, v, t)$ la fonction de distribution des électrons dans le plasma et *j* la densité de courant.

Le modèle Zakharov-Landau adimensionné

$$i \left(\partial_{t} \mathcal{E} + \boldsymbol{\nu} *_{x} \mathcal{E}\right) + \partial_{x}^{2} \mathcal{E} = \delta n \mathcal{E} + E_{p} e^{i(k_{1}x - \omega_{1}t)},$$

$$\partial_{t}^{2} \delta n - \mu \partial_{x}^{2} \delta n = \mu \partial_{x}^{2} \left(|\mathcal{E}|^{2}\right),$$

$$\hat{\boldsymbol{\nu}}(t,\xi) = -\frac{1}{\xi |\xi|} \partial_{v} F_{0}(t,v = \frac{1}{\xi}), \text{ si } \xi \in \Omega_{\xi}, \text{ 0 sinon},$$

$$\partial_{t} F_{0} = \partial_{v} \left(D(t,v) \partial_{v} F_{0}\right), \quad D(t,v) = \frac{1}{|v|} \left|\widehat{\mathcal{E}}\left(\xi = \frac{1}{v}, t\right)\right|^{2}, v \in \Omega_{v}$$

avec F_0 , la moyenne spatiale de f_e .

Couplage non-linéaire fortement non local.

Problème de Cauchy

On ne sait pas traiter le cas général. On fait $\mu = +\infty$ (régime sub-sonique) dans

$$i\left(\partial_{t}\mathcal{E} + \nu * \mathcal{E}\right) + \partial_{x}^{2}\mathcal{E} = \delta n\mathcal{E} + E_{p}e^{i(k_{1}x - \omega_{1}t)},$$

$$\partial_{t}^{2}\delta n - \mu \partial_{x}^{2}\delta n = \mu \partial_{x}^{2}\left(|\mathcal{E}|^{2}\right).$$

$$\partial_{t}F_{0} = \partial_{v}\left(D(t, v)\partial_{v}F_{0}\right).$$
(-11)

et on pose $H_e(t,\xi) = F_0(t,v=\frac{1}{\xi})$ alors ,

Problème de Cauchy

$$\begin{split} i(\partial_t E + \nu *_x E) + \partial_x^2 E &= -|E|^2 E + E_p e^{i(k_1 x - \omega_1 t)}, \\ \partial_t H_e - \xi^2 \partial_{\xi} (|\xi|^3 |\hat{E}|^2 \partial_{\xi} H_e) &= 0, \quad \forall \xi \in \Omega, \\ \hat{\nu}(t,\xi) &= sgn(\xi) \partial_{\xi} H_e(t,\xi) \mathbf{1}_{\Omega}. \end{split}$$

Où $\Omega = [-A, -a] \cup [a, A]$ avec $0 < a < A$.

Problème de Cauchy

$$\begin{split} i(\partial_t E + \nu *_x E) + \partial_x^2 E &= -|E|^2 E + E_p e^{i(k_1 x - \omega_1 t)}, \\ \partial_t H_e - \xi^2 \partial_\xi (|\xi|^3 |\hat{E}|^2 \partial_\xi H_e) &= 0, \quad \forall \xi \in \Omega, \\ \hat{\nu}(t,\xi) &= sgn(\xi) \partial_\xi H_e(t,\xi) \mathbf{1}_\Omega. \end{split}$$

Où $\Omega &= [-A, -a] \cup [a, A] \text{ avec } 0 < a < A.$
Théorème On prend $E_p \in L^\infty(\mathbb{R}^+; H^1)$ telle que
 $\widehat{E_p} \in L^\infty(\mathbb{R}^+; H^1(\mathbb{R}) \cap H^2(\Omega)).$
Alors il existe $T^* > 0$ et une unique solution (E, H_e) avec

 $(\underline{E}, \hat{\underline{E}}) \in L^{\infty}([0, T^{\star}[; H^1(\mathbb{R})) \times L^{\infty}([0, T^{\star}[; H^2(\Omega) \cap H^1(\mathbb{R})))$

 $\underline{H}_{e} \in L^{\infty}([0, T^{\star}[; H_{n}^{2}(\Omega)))$

• De plus si $\hat{\nu}(0,\xi) \ge 0 \ \forall \xi \in \mathbb{R}$ alors $\forall t \in [0,T^{\star}[, \hat{\nu}(t,\xi) \ge 0.$

2.2 Schéma numérique

.

Le système quasilinéaire a la propriété suivante :

$$\int \frac{1}{\xi^2} H_e(t,\xi) d\xi = \int \frac{1}{\xi^2} H_e(0,\xi) d\xi, \ \frac{1}{2} \frac{d}{dt} \int \frac{1}{\xi^4} H_e(t,\xi) = \int \hat{\nu}(t,\xi) |\hat{E}|^2 d\xi$$

2.2 Schéma numérique

Le système quasilinéaire a la propriété suivante :

$$\int \frac{1}{\xi^2} H_e(t,\xi) d\xi = \int \frac{1}{\xi^2} H_e(0,\xi) d\xi, \ \frac{1}{2} \frac{d}{dt} \int \frac{1}{\xi^4} H_e(t,\xi) = \int \hat{\nu}(t,\xi) |\hat{E}|^2$$

Schéma aux différences finies pour la diffusion:

$$\partial_t H_e - \xi^2 \partial_\xi (|\xi|^3 |\hat{E}|^2 \partial_\xi H_e) = 0$$
$$\frac{1}{\Delta t} (H_{j+\frac{1}{2}}^{k+1} - H_{j+\frac{1}{2}}^k) + (AH)_{j+\frac{1}{2}}^{k+1} = 0$$

2.2 Schéma numérique

Le système quasilinéaire a la propriété suivante :

$$\int \frac{1}{\xi^2} \boldsymbol{H_e}(t,\xi) d\xi = \int \frac{1}{\xi^2} \boldsymbol{H_e}(0,\xi) d\xi, \ \frac{1}{2} \frac{d}{dt} \int \frac{1}{\xi^4} \boldsymbol{H_e}(t,\xi) = \int \hat{\boldsymbol{\nu}}(t,\xi) |\hat{\boldsymbol{E}}|^2$$

Schéma aux différences finies pour la diffusion:

$$\partial_t H_e - \xi^2 \partial_\xi (|\xi|^3 |E|^2 \partial_\xi H_e) = 0$$
$$\frac{1}{\Delta t} (H_{j+\frac{1}{2}}^{k+1} - H_{j+\frac{1}{2}}^k) + (AH)_{j+\frac{1}{2}}^{k+1} = 0$$

où $AH_{j+\frac{1}{2}}$ est la discrétisation de $-\xi^2 \partial_{\xi} (\beta(t,\xi)\partial_{\xi}H_e)$ sous forme conservative au point $\xi_{j+\frac{1}{2}}$ avec $\beta(t,\xi) = |\xi|^3 |\hat{E}|^2$. On choisit *A* afin de satisfaire la conservation d'énergie.

Schéma numérique pour la diffusion.

On choisit *A* tel que :

$$(AH)_{j+\frac{1}{2}} = -\frac{\xi_{j+\frac{1}{2}}^2}{\Delta\xi} \left[\beta(\xi_{j+1}, t) \frac{H_{j+\frac{3}{2}} - H_{j+\frac{1}{2}}}{\Delta\xi} \right]$$
$$H_{j+\frac{1}{2}} = -\frac{H_{j+\frac{1}{2}}}{\Delta\xi}$$

$$-\beta(\xi_j,t)\frac{H_{j+\frac{1}{2}}-H_{j-\frac{1}{2}}}{\Delta\xi}\right]$$

Schéma numérique pour la diffusion.

On choisit *A* tel que :

$$(AH)_{j+\frac{1}{2}} = -\frac{\xi_{j+\frac{1}{2}}^2}{\Delta\xi} \left[\beta(\xi_{j+1}, t) \frac{H_{j+\frac{3}{2}} - H_{j+\frac{1}{2}}}{\Delta\xi} \right]$$
$$H_{j+\frac{1}{2}} - H_{j+\frac{1}{2}}$$

$$-\beta(\xi_j,t)\frac{H_{j+\frac{1}{2}}-H_{j-\frac{1}{2}}}{\Delta\xi}$$

Proposition Le bon choix de discrétisation de $\beta(t,\xi) = |\xi|^3 |\hat{E}|^2$ au point (t_k, ξ_l) est

$$\beta_l^k = \frac{\xi_{l+\frac{1}{2}}^2 \xi_{l-\frac{1}{2}}^2}{|\xi_{l+\frac{1}{2}} + \xi_{l-\frac{1}{2}}|} |\hat{E}_l^k|^2$$

Splitting en temps :

• Etape 1: Sur un demi pas de temps : on résoud

$$i\left(\partial_t E + \nu * E\right) + \partial_x^2 E = E_p(x)e^{i(k_1x - \omega_1t)}.$$

Splitting en temps :

• Etape 1: Sur un demi pas de temps : on résoud

$$i\left(\partial_t E + \nu * E\right) + \partial_x^2 E = E_p(x)e^{i(k_1x - \omega_1t)}.$$

• Etape 2: Sur un pas de temps, on résoud :

 $i\partial_t E = \delta n E$

$$\partial_t^2 \delta \mathbf{n} - \mu \partial_x^2 \delta \mathbf{n} = \mu \partial_x^2 \left(|\mathbf{E}|^2 \right)$$

Splitting en temps :

• Etape 1: Sur un demi pas de temps : on résoud

$$i\left(\partial_t E + \nu * E\right) + \partial_x^2 E = E_p(x)e^{i(k_1x - \omega_1t)}.$$

• Etape 2: Sur un pas de temps, on résoud :

 $i\partial_t E = \delta n E$

$$\partial_t^2 \delta \mathbf{n} - \mu \partial_x^2 \delta \mathbf{n} = \mu \partial_x^2 \left(|\mathbf{E}|^2 \right)$$

• Etape 3: => Etape 1.

Splitting en temps :

• Etape 1: Sur un demi pas de temps : on résoud

$$i\left(\partial_t E + \nu * E\right) + \partial_x^2 E = E_p(x)e^{i(k_1x - \omega_1t)}.$$

• Etape 2: Sur un pas de temps, on résoud :

 $i\partial_t E = \delta n E$

$$\partial_t^2 \delta \mathbf{n} - \mu \partial_x^2 \delta \mathbf{n} = \mu \partial_x^2 \left(|\mathbf{E}|^2 \right)$$

• Etape 3: => Etape 1.

CL périodique + méthode spectrale pour les 3 étapes.

Splitting en temps :

• Etape 1: Sur un demi pas de temps : on résoud

$$i\left(\partial_t E + \nu * E\right) + \partial_x^2 E = E_p(x)e^{i(k_1x - \omega_1t)}.$$

• Etape 2: Sur un pas de temps, on résoud :

 $i\partial_t E = \delta nE$

$$\partial_t^2 \delta \mathbf{n} - \mu \partial_x^2 \delta \mathbf{n} = \mu \partial_x^2 \left(|\mathbf{E}|^2 \right)$$

• Etape 3: => Etape 1. Proposition Si $\hat{\nu}_0 \ge 0$ alors

$$\left| E^{k+1} \right|_{l^2}^2 \le \left\| E^k \right\|_{l^2}^2 + \Delta t^2 \left\| E_p \right\|_{l_2}^2$$

Résultats numérique

•
$$S(t,x) = 7.6.10^{-3} \exp[-(x - L/4)^2/2\Delta L^2] \exp[i(k_1x - \omega_1t)].$$

• $L = 6000, \ \Delta L = 250\lambda_{De}, \ k_1 = 0.12, \ \omega_1 = k_1^2.$
• $\mathcal{E}(t=0,x) = 0, \ \delta n(t=0,x) = 0, \ F_0(t=0,v) = \frac{1}{\sqrt{2\pi}}e^{-\frac{v^2}{2}}.$

Echange d'énergie et fonction de distribution

MOAD, 22/03/07 - p.22/22

Table 1: Niveau de saturation des ondes plasma en fonction de $k_1 \lambda_{De}$ pour $S_0 = 7.6 \times 10^{-3}$ and $\Delta L/\lambda_{De} = 250$.

r							
$k_p \lambda_{De}$	ε_{ph}/T_e	$\max W_E$	W_{Esat}	W_{esat}	W_{tot}	T_h/T_e	n_h/n_0 ,9
0.12	34.7	0.17	0.012	0.025	0.037	10	0.25
0.15	22.2	0.18	0.01	0.035	0.036	9	0.39
0.18	15.4	0.21	0.007	0.048	0.055	9.5	0.50
0.22	10.3	0.24	0.014	0.028	0.042	8	0.35
0.24	8.7	0.26	0.016	0.023	0.03	7,5	0.30
0.26	7.4	0.32	0.021	0.018	0.036	7	0.22