

Transport diffusif d'un gaz d'électrons confiné dans une nanostructure.

Nicolas Vauchelet

MIP, UMR CNRS 5640, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France.

vauchel@mip.ups-tlse.fr

Motivation

There is a growing interest in nanoscale structure

- higher level of functionality
- higher operational speeds

Motivation

There is a growing interest in nanoscale structure

- higher level of functionality
- higher operational speeds

With the decrease of channel dimensions :

 \blacksquare quantum effects become nonnegligible \longrightarrow quantum model.

Modeling and simulation of nanotransistors is of great importance for future electronics.

Outline

I) Introduction

- Hybrid quantum-classical modeling for an electron gas confined in a nanostructure

Presentation of the Drift-Diffusion-Schrödinger-Poisson
 (DDSP) system

II) Analysis of the DDSP system : Existence, uniqueness result and long time behaviour

III) Numerical results : Simulation of the transport of charge carriers in a Double-Gate MOSFET

Introduction

In nanoscale semiconductor devices, electrons might be extremely confined in one or several directions due to length scales.

Introduction

In nanoscale semiconductor devices, electrons might be extremely confined in one or several directions due to length scales.

 Image: transport direction x
 z $x \in \omega \subset \mathbb{R}^2$

 Image: confining direction z
 $z \in (0, 1)$

 x $z \in (0, 1)$

Two descriptions for the model :

- classical in the transport direction.
- quantum in the confining direction.
- coupled quantum/classical model when the coupling occurs in the momentum variable.

Subband model

Confinement in the transverse direction $z \in (0, 1)$.

Quantization of energy levels ϵ_k .

Subband model

Confinement in the transverse direction $z \in (0, 1)$.

Quantization of energy levels ϵ_k .

 $(\epsilon_k[V], \chi_k[V])_{k \ge 1}$ is the complete set of eigenvalues and eigenvectors of the stationary Schödinger equation :

$$\begin{cases} -\frac{\hbar^2}{2} \frac{d}{dz} (\frac{1}{m_*(z)} \frac{d}{dz} \chi_k) + (q V + U_c) \chi_k = \epsilon_k \chi_k, \\ \chi_k[V](0) = \chi_k[V](1) = 0, \quad \int_0^1 \chi_k \chi_{k'} \, dz = \delta_{k,k'}. \end{cases}$$

- U_c : potential barrier.
- V: electrostatic potential.

Poisson equation

V(t, x, z) satisfies the Poisson equation

$$-\operatorname{div}_{x,z}(\varepsilon_R \nabla_{x,z} V(t,x,z)) = \frac{q}{\varepsilon_0} (N(t,x,z) - N_D),$$

where N_D is a doping profile,

 ${\cal N}$ is the density of charge carriers,

 ε_R , ε_0 are the permittivity.

Poisson equation

V(t, x, z) satisfies the Poisson equation

$$-\operatorname{div}_{x,z}(\varepsilon_R \nabla_{x,z} V(t,x,z)) = \frac{q}{\varepsilon_0} (N(t,x,z) - N_D),$$

where N_D is a doping profile, N is the density of charge carriers, $\varepsilon_R, \varepsilon_0$ are the permittivity.

 ρ_k : occupation number of each state

$$N(t, x, z) = \sum_{k=1}^{+\infty} \rho_k(t, x) |\chi_k[V](z)|^2.$$

Transport direction

Collisions with phonons drive the electrons towards a diffusive regime.

In a kinetic regime, the transport is described by the Boltzmann equation. The diffusive regime is obtained by letting the mean free path η going to 0.

Collisions with phonons drive the electrons towards a diffusive regime.

In a kinetic regime, the transport is described by the Boltzmann equation. The diffusive regime is obtained by letting the mean free path η going to 0.

Let $f_k^{\eta}(t, x, v)$ be the distribution function of the *k*th subband at the time *t*, the position *x* and velocity *v*.

$$\partial_t f_k^{\eta} + \frac{1}{\eta} (v \cdot \nabla_x f_k^{\eta} - \nabla_x (\beta \boldsymbol{\epsilon}_k) \cdot \nabla_v f_k^{\eta}) = \frac{1}{\eta^2} Q(f^{\eta})_k,$$

for $\beta = 1/(k_B T)$, k_B the Boltzmann constant and T the temperature of the lattice.

Transport direction

Proposition : For Boltzmann statistics the collision operator Q in the linear BGK approximation satisfies

(i)
$$\sum_{k} \int_{\mathbb{R}^2} Q(f)_k \, dv = 0.$$

(ii) Q is a linear, self adjoint, negatif bounded operator. (iii) Ker Q = Span {M} where the Maxwellian

$$\mathcal{M}_k(t, x, v) = \frac{1}{2\pi \mathcal{Z}(t, x)} e^{-v^2/2 - \beta \epsilon_k(t, x)}$$

The repartition function is defined by

$$\mathcal{Z}(t,x) = \sum_{k} e^{-\beta \epsilon_k(t,x)}.$$

Transport direction

Formally, if we assume that f_k^η admits an Hilbert expansion $f^\eta = f^0 + \eta f^1 + O(\eta^2)$. Then

 $Q(f^0)_k + \eta Q(f^1)_k + O(\eta^2) = \eta (v \cdot \nabla_x f_k^0 - \nabla_x (\beta \boldsymbol{\epsilon}_k) \cdot \nabla_v f_k^0) + O(\eta^2).$

Thus,

$$f_k^0 = N_s \mathcal{M}_k, \ \forall k \ge 1,$$

$$f_k^1 = -Q^{-1} (-v \mathcal{M})_k (\nabla_x N_s + N_s \nabla_x V_s)$$

where $V_s(t, x) = -\log(\mathcal{Z}(t, x))$ is the effective potential.

Drift-Diffusion equation

$$\partial_t f_k^{\eta} + \frac{1}{\eta} (v \cdot \nabla_x f_k^{\eta} - \nabla_x (\beta \boldsymbol{\epsilon}_k) \cdot \nabla_v f_k^{\eta}) = \frac{1}{\eta^2} Q(f^{\eta})_k.$$

By summing and integrating, we have

$$\partial_t \int \sum_k f_k^{\eta} \, dv + \frac{1}{\eta} \int \sum_k v \cdot \nabla_x f_k^{\eta} \, dv = 0.$$

Letting formally $\eta \to 0$ gives

 $(DD) \qquad \partial_t N_s + \operatorname{div}_x J = 0,$

where the current $J = -\mathbb{D}(\nabla_x N_s + N_s \nabla_x V_s)$, and the diffusion matrix

$$\mathbb{D} = \sum_{k} \int_{\mathbb{R}^2} Q^{-1} (-v\mathcal{M})_k \otimes v \, dv.$$

In the following \mathbb{D} is assumed to be given.

The coupling

The occupation factor $\rho_k^\eta = \int_{\mathbb{R}^2} f_k^\eta \, dv$ satisfies at the limit :

$$\rho_k(t,x) = N_s(t,x) \frac{e^{-\beta \epsilon_k(t,x)}}{\mathcal{Z}(t,x)}.$$

Therefore,

$$N(t, x, z) = \sum_{\substack{k=1 \ +\infty}}^{+\infty} \rho_k(t, x) |\chi_k(t, x, z)|^2$$
$$= \sum_{\substack{k=1 \ k=1}}^{+\infty} N_s(t, x) \frac{e^{-\beta \epsilon_k(t, x)}}{\mathcal{Z}(t, x)} |\chi_k(t, x, z)|^2.$$

And
$$N_s(t, x) = \int_0^1 N(t, x, z) dz$$
 is the surface density.

N. Vauchelet, 21/03/2007

$$\partial_t N_s - \operatorname{div}_x \left(\mathbb{D}(\nabla_x N_s + N_s \nabla_x V_s) \right) = 0,$$

$$\partial_t N_s - \operatorname{div}_x \left(\mathbb{D}(\nabla_x N_s + N_s \nabla_x V_s) \right) = 0,$$

$$\begin{cases} -\frac{\hbar^2}{2} \frac{d}{dz} \left(\frac{1}{m_*(z)} \frac{d}{dz} \chi_k[V]\right) + \left(qV + U_c\right) \chi_k[V] = \mathcal{E}_k[V] \chi_k[V] \\ \chi_k[V](0) = \chi_k[V](1) = 0, \quad \int_0^1 \chi_k \chi_{k'} \, dz = \delta_{k,k'}. \\ -\operatorname{div}_{x,z}(\varepsilon_R \nabla_{x,z} V) = \frac{q}{\varepsilon_0} (N - N_D), \end{cases}$$

$$\partial_t N_s - \operatorname{div}_x \left(\mathbb{D}(\nabla_x N_s + N_s \nabla_x V_s) \right) = 0,$$

$$\begin{cases} -\frac{\hbar^2}{2} \frac{d}{dz} \left(\frac{1}{m_*(z)} \frac{d}{dz} \chi_k[V]\right) + \left(qV + U_c\right) \chi_k[V] = \mathcal{E}_k[V] \chi_k[V] \\ \chi_k[V](0) = \chi_k[V](1) = 0, \quad \int_0^1 \chi_k \chi_{k'} \, dz = \delta_{k,k'}. \\ -\operatorname{div}_{x,z}(\varepsilon_R \nabla_{x,z} V) = \frac{q}{\varepsilon_0} (N - N_D), \end{cases}$$

$$N = N_s \sum_{k \ge 1} \frac{e^{-\beta \epsilon_k} |\chi_k|^2}{\sum_k e^{-\beta \epsilon_k}}; \quad V_s = -\log(\sum_{k \ge 1} e^{-\beta \epsilon_k}).$$

Part I Analysis of DDSP : Existence, uniqueness and long time behaviour

The DDSP system

$$\partial_t N_s - \operatorname{div}_x \left(\mathbb{D}(\nabla_x N_s + N_s \nabla_x V_s) \right) = 0,$$

$$\begin{cases} -\frac{1}{2} \frac{d^2}{dz^2} \chi_k[V] + V \chi_k[V] = \epsilon_k[V] \chi_k[V] \\ \chi_k[V] \in H^1(0, 1), \ \int_0^1 \chi_k[V] \chi_\ell[V] \, dz = \delta_{k\ell} \\ -\Delta_{x,z} V = N, \end{cases}$$

$$N \sum \frac{e^{-\epsilon_k[V]} |\chi_k[V]|^2}{|\chi_k[V]|^2} : V = -\log(\sum e^{-\epsilon_k[V]})$$

$$N = N_s \sum_{k \ge 1} \frac{e^{-\epsilon_k [\mathbf{V}]}}{\sum_k e^{-\epsilon_k [\mathbf{V}]}}; \quad V_s = -\log(\sum_{k \ge 1} e^{-\epsilon_k [\mathbf{V}]}).$$

Structure of the system

Analogy with the classical Drift-diffusion-Poisson model

- Entropy estimate
- Fixed point procedure
- Analysis of the
 Schrödinger-Poisson
 system

References

- Drift-diffusion-Poisson : Gajewski, Mock, Markowich- Ringhofer-Schmeiser
- Vlasov-Poisson : Ben Abdallah, Poupaud
- Schrödinger-Poisson : Nier
- Vlasov-Schrödinger-Poisson : Ben Abdallah- Méhats
- *Long time behaviour :* Arnold- Markowich- Toscani- Unterreiter, Dolbeault- Del Pino, ...
- Spectral properties of the Hamiltonian : Pöschel- Trubowitz

Results

Theorem : Let T > 0 be fixed and the initial and boundary conditions smooth. The DDSP system admits a unique weak solution such that

$$N_s \in C([0,T], L^2(\omega)) \cap L^2((0,T), H^1(\omega))$$

 $V \in C([0,T], H^2(\Omega)).$

Results

Theorem : Let T > 0 be fixed and the initial and boundary conditions smooth. The DDSP system admits a unique weak solution such that

$$N_s \in C([0,T], L^2(\omega)) \cap L^2((0,T), H^1(\omega))$$

 $V \in C([0,T], H^2(\Omega)).$

 $(N_s^{\infty}, V^{\infty})$ solution of the stationary problem.

Theorem : If the boundary conditions are at thermal equilibrium. There exist $\lambda > 0$ and C > 0 such that for all $t \ge 0$,

$$||N_s - N_s^{\infty}||_{L^2(\omega)}(t) + ||V - V^{\infty}||_{H^1(\omega)}(t) \le Ce^{-\lambda t}.$$

Entropy estimate

We define the relative entropy

$$W = \sum_{k} \int_{\omega} (\rho_{k} \log(\rho_{k}/\underline{\rho_{k}}) - \rho_{k} + \underline{\rho_{k}}) dx$$

+ $\frac{1}{2} \int_{\Omega} |\nabla_{x,z}(V - \underline{V})|^{2} dx dz$
+ $\sum_{k} \int_{\omega} \rho_{k} \left(\epsilon_{k}[V] - \epsilon_{k}[\underline{V}] - \langle |\chi_{k}|^{2}(V - \underline{V}) \rangle \right) dx,$

(underlined quantities are extension of boundary data). **Proposition :** If (N_s, V) is a weak solution of DDSP, then $\forall t \in [0, T], 0 \leq W(t) < C_T$. Thus,

 $\rho_k \in L^{\infty}((0,T), L \log L(\omega))$ and $V \in L^{\infty}((0,T), H^1(\Omega)).$

L^2 estimate ($\mathbb{D} = Id$)

Proposition: If the initial condition $N_s^0 \in L^2(\omega)$ and if we have a weak solution (N_s, V) of the DDSP system. Then we have a bound on $||N_s||_{L^2(\omega)}$ depending only on T and on the data.

(The fact that $\mathbb{D} = Id$ allows to use integrations by parts)

Schrödinger-Poisson system ($\mathbb{D} = Id$) 20

$$\begin{cases} -\frac{1}{2}\frac{d^2}{dz^2}\chi_k[V] + V\chi_k[V] = \boldsymbol{\epsilon}_k[V]\chi_k[V] \\ \chi_k[V] \in H^1(0,1), \ \int_0^1 \chi_k[V]\chi_\ell[V] \, dz = \delta_{k\ell} \\ -\Delta_{x,z}V = N_s \sum_{k\geq 1} \frac{e^{-\boldsymbol{\epsilon}_k[V]}|\chi_k[V]|^2}{\sum_k e^{-\boldsymbol{\epsilon}_k[V]}}. \end{cases}$$

Proposition: Let $N_s \in L^2(\omega)$ such that $N_s \ge 0$. Then the SP system admits a unique solution $(V, (\mathcal{E}_k, \chi_k)_{k\ge 1})$, which satisfies the estimates $||V||_{H^2(\Omega)} \le C(N_s)$. Moreover, for two arbitrary data N_s and \widetilde{N}_s , the corresponding solutions satisfy :

$$\|V - \widetilde{V}\|_{H^2(\Omega)} \le C(N_s, \widetilde{N_s}) \|N_s - \widetilde{N_s}\|_{L^2(\omega)}.$$

 $(C(N_s)$ denotes a constant depending only on $||N_s||_{L^2(\omega)}$.)

Schrödinger-Poisson system ($\mathbb{D} = Id$) 21

Idea of the proof : We consider the functional

$$J(V, N_s) = J_0(V) + J_1(V, N_s) = \frac{1}{2} \int_{\Omega} |\nabla_{x,z} V|^2 + \int_{\omega} N_s \log(\sum_k e^{-\epsilon_k [V]}) \, dx.$$

J is a continuous, strongly convex, coercive on $H^1(\Omega) \Rightarrow$ admits a unique minimizer.

A weak solution of the Schrödinger-Poisson system is a critical point of J.

Fixed point procedure

For N_s given, we solve SP system $\longrightarrow V$, $(\boldsymbol{\epsilon}_k[V], \chi_k[V])_{k \ge 1}.$

Fixed point procedure

For N_s given, we solve SP system $\longrightarrow V$, $(\boldsymbol{\epsilon}_k[V], \chi_k[V])_{k \ge 1}$.

For this potential V we solve the parabolic equation

$$\partial_t \widehat{N_s} - \operatorname{div}_x (\nabla_x \widehat{N_s} + \widehat{N_s} \nabla_x V_s) = 0,$$

with $V_s = -\log(\sum_k \exp(-\epsilon_k[V])) \longrightarrow F(N_s) = \widehat{N_s}.$

Fixed point procedure

For
$$N_s$$
 given, we solve SP system $\longrightarrow V$,
 $(\epsilon_k[V], \chi_k[V])_{k \ge 1}$.

For this potential V we solve the parabolic equation $\partial_t \widehat{N}_s - \operatorname{div}_x (\nabla_x \widehat{N}_s + \widehat{N}_s \nabla_x V_s) = 0,$

with
$$V_s = -\log(\sum_k \exp(-\epsilon_k[V])) \longrightarrow F(N_s) = \widehat{N_s}.$$

F is a contraction on $M_{T_0} = \{n : ||n||_T \le 2||F(0)||_1\}$ for T_0 small enough and

$$||n||_T^2 = \max_{0 \le t \le T} ||n(t)||_{L^2(\omega)}^2 + \int_0^T ||n(t)||_{H^1(\omega)}^2 dt.$$

Entropy \Rightarrow extend to [0, T].

Existence results ($\mathbb{D} \neq Id$)

For $\mathbb{D} \neq Id$

$$\partial_t N_s - \operatorname{div}_x(\mathbb{D}(\nabla_x N_s + N_s \nabla_x V_s)) = 0,$$

coupled to the Schrödinger-Poisson system. **Assumption**: \mathbb{D} is a C^1 function on $\overline{\Omega}$ into the set of 2×2 symmetric positive definite matrix such that $\mathbb{D}(x) \ge \alpha Id$ for $\alpha > 0$.

Existence results ($\mathbb{D} \neq Id$)

For $\mathbb{D} \neq Id$

$$\partial_t N_s - \operatorname{div}_x(\mathbb{D}(\nabla_x N_s + N_s \nabla_x V_s)) = 0,$$

coupled to the Schrödinger-Poisson system. **Assumption**: \mathbb{D} is a C^1 function on $\overline{\Omega}$ into the set of 2×2 symmetric positive definite matrix such that $\mathbb{D}(x) \ge \alpha Id$ for $\alpha > 0$.

Theorem : Let T > 0, the DDSP system admits a weak solution such that

$$N_s \log N_s \in L^{\infty}([0,T], L^1(\omega)) \text{ and } \sqrt{N_s} \in L^2([0,T], H^1(\omega)),$$

 $V \in L^{\infty}([0,T], H^1(\omega)).$

Existence ($\mathbb{D} \neq Id$)

Idea of the proof :

- Regularize the system.
- Entropy estimate : with our assumption of case $\mathbb{D} = Id$.

Existence ($\mathbb{D} \neq Id$)

Idea of the proof :

- Regularize the system.
- Entropy estimate : with our assumption of case $\mathbb{D} = Id$.
- Existence of solutions for the regularized system (cf case $\mathbb{D} = Id$).

Existence ($\mathbb{D} \neq Id$)

Idea of the proof :

- Regularize the system.
- Entropy estimate : with our assumption of case $\mathbb{D} = Id$.
- Existence of solutions for the regularized system (cf case $\mathbb{D} = Id$).
- Passing to the limit in the solution of the regularized system as the regularization tends to 0 : Aubin-Lions compactness method.

Schrödinger-Poisson system

What sense can we give to $N_s \sum_k \frac{e^{-\epsilon_k}}{\mathcal{Z}} |\chi_k|^2$ for $N_s \in L \log L(\omega)$ and $V \in H^1(\Omega)$?

Schrödinger-Poisson system

What sense can we give to $N_s \sum_k \frac{e^{-\epsilon_k}}{\mathcal{Z}} |\chi_k|^2$ for $N_s \in L \log L(\omega)$ and $V \in H^1(\Omega)$? We have

$$\|\chi_k[V]\|_{L^{\infty}_{z}(0,1)} \le C(1 + \|V\|_{L^{2}_{z}(0,1)}^{1/2}).$$

Schrödinger-Poisson system

What sense can we give to $N_s \sum_k \frac{e^{-\epsilon_k}}{\mathcal{Z}} |\chi_k|^2$ for $N_s \in L \log L(\omega)$ and $V \in H^1(\Omega)$? We have

$$\|\chi_k[V]\|_{L^{\infty}_{z}(0,1)} \le C(1 + \|V\|_{L^{2}_{z}(0,1)}^{1/2}).$$

And with the Young inequality

$$\int_{\omega} N_s \|V\|_{L^2_z(0,1)} dx \le \|V\|_{H^1(\Omega)} \int_{\omega} (N_s \log N_s - N_s + e^{\frac{\|V\|_{L^2_z(0,1)}}{\|V\|_{H^1(\Omega)}}}) dx$$

Trudinger inequality : $\exists \gamma > 0$ such that for all $u \in H^1(\omega)$

$$\int_{\omega} \exp\left(\gamma \frac{u(x)^2}{\|u\|_{H^1(\omega)}^2}\right) \, dx < +\infty.$$

We define the relative entropy

$$W^{\infty}(t) = \sum_{k} \int_{\omega} (\rho_{k} \log(\rho_{k}/\rho_{k}^{\infty}) - \rho_{k} + \rho_{k}^{\infty}) dx$$

+ $\frac{1}{2} \int_{\Omega} |\nabla_{x,z}(V - V^{\infty})|^{2} dx dz$
+ $\sum_{k} \int_{\omega} \rho_{k}(\boldsymbol{\epsilon}_{k}[V] - \boldsymbol{\epsilon}_{k}[V^{\infty}] - \langle |\chi_{k}|^{2}(V - V^{\infty}) \rangle) dx.$

The relative entropy W measures the distance to the equilibrium and decreases :

$$\frac{d}{dt}W^{\infty}(t) = D(t) = -\sum_{k} \int_{\omega} e^{-\mathbb{D}\epsilon_{k}} |\nabla(\log(N_{s}e^{V_{s}}))|^{2} dx.$$

Two methods :

1) For an insulating system \implies conservation of the mass.

Logarithmic Sobolev inequality to prove

$$\frac{d}{dt}W^{\infty}(t) \le -\lambda W^{\infty}(t)$$

(for a positive constant $\lambda > 0$) $\Longrightarrow W^{\infty}(t) \le e^{-\lambda t} W^{\infty}(0)$.

Csiszàr-Kullack inequality

$$\|\rho - \rho^{\infty}\|_{\ell^{1}(L^{1}(\omega))} \le C_{1}W^{\infty}(t) \le C_{1}W^{\infty}(0) e^{-\lambda t}.$$

2) Non conservation of the mass (f.e. Dirichlet boundary condition) : Linearization of the entropy

$$n_s = N_s - N_s^{\infty}; \ v_s = V_s - V_s^{\infty}; \ v = V - V^{\infty}$$

2) Non conservation of the mass (f.e. Dirichlet boundary condition) : Linearization of the entropy

$$n_s = N_s - N_s^{\infty}; \ v_s = V_s - V_s^{\infty}; \ v = V - V^{\infty}.$$

convergence of the relative entropy

 $\lim_{t \to +\infty} W(t) = 0.$

Thus $||n_s||_{L^1(\omega)} \to 0$ and $||v||_{H^1(\Omega)} \to 0$ as t goes to $+\infty$.

quadratic approximation of the relative entropy :

$$L(t) = \frac{1}{2} \int_{\omega} \frac{(n_s)^2}{N_s^{\infty}} dx + \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx dz + \int_{\omega} N_s v_s dx - \int_{\Omega} Nv dx dz.$$

quadratic approximation of the relative entropy :

$$L(t) = \frac{1}{2} \int_{\omega} \frac{(n_s)^2}{N_s^{\infty}} dx + \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx dz + \int_{\omega} N_s v_s dx - \int_{\Omega} Nv dx dz.$$

Lemma : We have

$$\frac{1}{2} \int_{\omega} \frac{(n_s)^2}{N_s^{\infty}} dx + \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx dz \le L(t).$$

There exists $t_* > 0$ such that

$$\forall t > t_*, \ \frac{d}{dt}L(t) \le -C_0L(t).$$

Part II Numerical simulations

Simulated structure

Classical transport in the x direction Quantum description in the z direction

quantum-classical coupled system

Structure of Si invariant with respect to $x_2 : x = x_1$.

References

- F. Brezzi, L.D. Marini, P. Pietra : Gummel on Drift-Diffusion.
- Ph. Caussignac, B. Zimmermann, R. Ferro.
- F. Nier : Schrödinger-Poisson system.
- N. Ben Abdallah, E. Polizzi, C. Negulescu : *purely balistic model* of Schrödinger type.
- E. Polizzi, N. Ben Abdallah : subband decomposition method.
- M. Baro, N. Ben Abdallah, P. Degond, A. El Ayyadi : hybrid

classical-quantum model.

$$\operatorname{div}_{x} \left(\mathbb{D}(\nabla_{x}N_{s} + N_{s}\nabla_{x}V_{s}) \right) = 0,$$

$$\left\{ \begin{array}{l} -\frac{\hbar^{2}}{2}\frac{d}{dz}\left(\frac{1}{m_{*}(z)}\frac{d}{dz}\chi_{k}[V]\right) + \left(qV + U_{c}\right)\chi_{k}[V] = \boldsymbol{\epsilon}_{k}[V]\chi_{k}[V] \\ \chi_{k}[V](0) = \chi_{k}[V](\ell) = 0, \quad \int_{0}^{\ell}\chi_{k}\chi_{k'}\,dz = \delta_{k,k'}. \\ -\operatorname{div}_{x,z}(\varepsilon_{R}\nabla_{x,z}V) = \frac{q}{\varepsilon_{0}}(N - N_{D}), \\ N = N_{s}\sum_{k\geq 1}\frac{e^{-\beta\boldsymbol{\epsilon}_{k}}|\chi_{k}|^{2}}{\sum_{k}e^{-\beta\boldsymbol{\epsilon}_{k}}}; \quad V_{s} = -\log(\sum_{k\geq 1}e^{-\beta\boldsymbol{\epsilon}_{k}}). \end{array} \right.$$

Numerical resolution : boundaries

In z = 0 and $z = \ell$:

Mixed boundary conditions for the potential.

- Gate : ohmic contacts \Rightarrow Dirichlet,
- insulating frontier \Rightarrow Neumann.

Numerical resolution : boundaries

In z = 0 and $z = \ell$:

Mixed boundary conditions for the potential.

- Gate : ohmic contacts \Rightarrow Dirichlet,
- insulating frontier \Rightarrow Neumann.

At the source and drain :

High dopping $N^+ \Rightarrow$ Drain and Source are equivalent to small electrons reservoirs.

density and potential are independent of the transport direction.

Gummel iteration

At the source :

Schrödinger-Poisson 1D.

Gummel iteration

At the source :

Schrödinger-Poisson 1D.

No Drain-Source voltage applied : the Fermi level $\epsilon_F = \log(N_s e^{V_s})$ is constant = its values at the boundary,

Schrödinger 1D – Poisson 2D.

Gummel iteration

At the source :

Schrödinger-Poisson 1D.

No Drain-Source voltage applied : the Fermi level $\epsilon_F = \log(N_s e^{V_s})$ is constant = its values at the boundary,

Schrödinger 1D – Poisson 2D.

Small perturbation :

- Diagonalization of the 1D Schrödinger operator.
- Computation of the density : Drift-Diffusion 1D.
- Computation of the potential : Poisson 2D.
- Loop on the potential.

Numerical results

Figure 1: Left : I-V characteristics for different V_{Gate} ; Right : characteristics current - V_{Gate}

Numerical results

Figure 2: Evolution of the density for $V_{DS} = 0V$ (left) and for $V_{DS} = 0.2V$ (right)

Numerical results

Figure 3: Left : surface density for $V_{DS} = 0.2V$; Right: Potential energy for $V_{DS} = 0.2V$

Anisotropics effects in silicon $\Rightarrow m_t^*$ transversal effective mass and m_l^* longitudinal.

■ 3 different configurations for electrons.

constant energy
surface : 6 ellipsoids
and 3 configurations

 (m_t^*, m_t^*, m_l^*)

 (m_t^*, m_l^*, m_t^*)

 (m_l^*, m_t^*, m_t^*)

Figure 4: Energy levels $\epsilon_k(x)$ for the two values of the effective mass (m_t^* in line, m_l^* in dotted line) for $V_{DS} = 0V$ (left) and $V_{DS} = 0.5V$ (right)

Figure 5: Effect of the effective mass on the confinement : transversal (left), longitudinal (right)

Figure 6: Left : density with $V_{DS} = V_{Gate} = 0V$; Right : density with $V_{DS} = V_{Gate} = 0.2V$

Conclusion and perspectives

We introduce a hybrid coupling between a quantum and a classical model for an electron gas confined in a nanostructure. A mathematical analysis and a numerical simulation of this model was presented.

- Realize a hybrid coupling with a purely balistic model of Schrödinger type.
- Consider the Fermi-Dirac statistics.
- Take into account the dependence of the diffusion matrix in the subband energy.
- Existence results for the Boltzmann-Schrödinger-Poisson system.